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CALCULATION OF POTENTIAL FLOW PAST AIRSHIP BODIES 117YAW*

By I. Lotz

The calculation of the potential flow past an airship
in yaw is accomplished, according to Von Karman, by divid-
ing the air stream into a flow parallel to the airship ax-
is and one perpendicular to it, after which the potential
flow about the solid of rotation exposed in axial direct-
ion can then be determined by a method suggested by Ran-
kine. The’axis of the body is superposed by sources and
sinks and the intensity so defined that t-he closed stream
surface formed by superposition of parallel flow on this
source-sink flow is coincident with the surface of tho
solid. Von Karman (reference 1) pursued an analogous rdeth-
od for defining the potential set up by the lateral flow.
He disposes dipolars** on the axis, so that the intensity
of this superposition is again defiiled by the postulate
that for the fluid motion, produced by superposition of
parallel and d~o~%r flow, the surface of the solid is
stream surface. Both problems yield integral equations.
For&pp~oximate solution, he substituted a definite number
of pze%es with constant superposition for the continuous
superposition. A numerical calculation of examples accord-
ing to this method revealed certain difficulties for sol-
ids in yaw with not very slender bows, which finally pronpt-
ed tho use of sources and sinks on tho surface of the solid
instead of di,pol:r=~n~n the axis, and to compute the field
of flow by this ~. The oxperiencos collocted fron tko ‘
calculations and which should prove useful for other simi-
lar problems, form the subject of this report.

.-——. -—--- .— ..——. . ..--..—

*Zur Berechnung dor Potefitialstr!!”mung urn quergestellte
-Iiuftschiffkorper~. .Ingen.ieur-@chiy, Vol. 11,,.1931, pp.
507-52’7.

**On Dipolars and Their Fields of ~lOW* See H{tte, Vol. I,
26th edition, p. 364.
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I. AXIAL SUPERPOSITION

A. Partially ‘Constant Dipolar “Superposition

The axis of the airs~hip is assumed to coincide Witli

a~is x, counted. from the bow. Cylindrical coordinates
are introduced so that

z =r coscp, Y = r sinq (Fig. 1.)

Tilesolid itself, of length t is assumed given by its :oe-
ridian ,curve r (x).

The normal
%
elocities induced on the surface by the

parallel flow in irection of’%’egative axis z, are pro-
portionate to Cos q). Since ILipols lying on the axis of
the solid also set up on the surface of the solid normal
velocities proportionate to cos q,mangle g does not ap-
pear in the integral equation defining dipolar motion IL.
This equation rests, as already stated, on the premise t~iat
the surface is:stream urf,ace, so that oil it the normal
velocity, composed of% ipolar motion and=comvonent set u--
by the flow, disappears, Designating the po;.nt of the ax-

is carrying the superposition by !*, expressing dr=r,
dx

and W = velocity of air flow, this equation for the ad-
herence of flow to a parallel of latitude with abscissa x
reads as

(1)

It is IEaown, and Karman also pointed it out in his
summary, that exact substit-ition of the body by a superpo-
sition on. the axis of rotation is possible only “w”hen the
analytical c~ntinuation of the potential function free of
singularities in the outer space of the solid can be ex-
tended to the axis of symmetry without eticountering siW=-

.-.--~— .--.— -.. .—-

*~,le zero pOiilt Of t coincides with that for x.

— .—.- -— . . ...—,,. ..— 1
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lar points.’) Since “the Question of wheii or Then not this
continuance is possible, has never been answered, numer-
ical calculations”are apt to have disagreeable surprises.
in store”.*.

&d=
fi#&%d.istributiont~eWith n .w~ of constant

flow .adhe,res.only in n points (cont”rol points) of .tlle
meridian curve; that means” on n circles of the bodype -
riphery. (Fig. 2.) The result is an n system of ,1’%naar
equations for the n .,,unknown +lipolar intensities

(;eference~; ) ::r “:;;;**”
.With the. Vth dipol space reachi.lg from
(fig. 3), the control point X , . -
adherence is expressed as

n
Zvwv. [Ag~+r:Afvl =4~r2”~ :,(2)
2., ..’

whereby
., Agv = g(x, ~v),‘g(x,t~+~),’

\ (3)
Afv = f(x,zv) - f(x, &-l),J

where g(x, g) = COS$(2 - cos~ s),’

} (4),.
f(x,g) = sins $

J ““”.”:.

wi th
-tan ~ = -A– (qig.. 3’.j ‘x-~ ,,

Karman has co.mputed the functions g and f aud” the>-
x- E

appear as dependent on — For point x =.Q, r .= Q
r“

equatioil ,(2) becomes ,.

in ~ 1
A) “n ““Z”l

(~
~ ..;VUv T - -m XV~v ~--

[;i 1 (~ ,*) = 4“n w (~)
v+ 1 v+ 1 v“,

x--o (r.r~)where m = limt
!,

,,

r~~,,. .-, ...
-. -..—.~- —----.-——...—.....___
““*In the “Jablonowski Prize E39aY, 1.914,”G,” Herglrstz’“tredted-
a similar problem: Analytical contiiluance.af ~dtk)ntid ‘into
the inside of the adheriilg masses, although the fundamental
difference” of. the problems makes it impossible, “to expect
a-ny exp Zanation.
**:lanifested in (1) hy inserting partially constant super-
position ~.
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m is “a finite numler,. i)ecaus.e, r ..ordinarily, goes. to zero
as c ~E; Then the” product* (r ?t) for smali x is”

..”

that is, finite for x-o and equal to the ~radius,of the
curved sphere for point .x= O, r = O. ,, . .

A different method of visualizing the dipolar inten-
sities is to cut the solid parallel to its axis and perpen-
dicular to the parallel flow and stipulate that the flow
through the outside of this section, generated by the di-
polar motion be equal to the flow of the undisturbed stream
through this area,” i.e., equivalent to the. section multi-
plied by the flow velocity at infinity. It is not advisa-
ble to effect n such cuts to define the n dipolar iil-

teilsities, because the slender forms of interest to us
render the exact graphic analysis, of the section difficult
and at the same time becloud the dipolar effect when the
-cut is inade at a di,stanc,e r contiguous to rmax from

- the axis. But it” is advantageous to, occasionally replace
one or two equations with such flow conditions in the sys-
tem (2).

The length of the constant dipolar intensities must
be decided at the very beginning. Knowing V to be about
proportwa ra

d
according to Von Karman, the length

o.f the ~depen s on the ~-of &k change of r.
toward bow and stern.@%’will be less The major obstacle

lies in the choice of the starting point of the superposi-
tion, whose “distance from the bow may be. assulmed xl ● For
t:ae sphere the ratio of xl to curvature radius m is =
1. Long extended _bodies having on the axis a stronger di-
polar motion, the,interference velocities outside of the
body increase conformably to the f,low condition, which
means a shortening of distance xl 9 Consequently, the
starting polint must le ahead of the center of curvature
of the bow; for the rest, its selection must be left to
experiment

If a calculation is made first it affords a check on
whether or not point xl ‘has been correctly chosen. If
the surface of the body is reallycisurfac.e of flow tnen
even the higher differential quotients rll, etc;, of the

—.. ——
*

d ~~~”
(~ r!)=- ‘i.2/; th~t is, ..r,ri

, , &w.
= the’de~iv- of the

dx
curve n ra (x) divided by 2 IT.

.’

●

91
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mer-idi”an--section of’ the “Glosed’stbeam surfaceb produced
by swpe.rposed dipolar and parallel flow, must correspond
with those of the surface of the body. “He shall see wheth-
er thi i t-qe-case ”for the bow, Differentiate equation
(l! *#%&#&& ‘+0 x. and formthe,limit for
r, Putting ~ . ~ ,.

,..

;~” 1- , 1 ;
?pu, p (~- ~5)

and ,.
V+l v

...’... . .
,’ limit [(ri2 +r rll.).= lj= S’x-+-o

r--+t) “

it manifests

(8)

,.

0 (9)

The condition is extremely sharp. It shows that eveil

a minor error in the selection of ‘1 is irmnedi,ately fol-
lowed by a tangible deviation from zero at the right side.
“Even an estimate of the anticipated y values may, under
certain circumstances afford a check on the ,fulfillment of
this condition. .Tile e ~,..values drop very. quickly, so

ft~at for the balance qn ,ythe first spaces come into, con-
sideration. .. . .,

The speedy +batemont of tho % v viduos ,.with risi~lg
P induces the;:following: Assuming that very high ~= G-,,:

. ~s.,of.t’he bulklnead surface curve are known, it’.would.he
p“ossible to compu%e V1 direc

Y
by repeat~d ifferenti.a-

.t.ionof equation (1) and forma ion of its limit, for. x ,= cJ,

r=O, hfter having Proceeded far enough so that ,6PV.
a%ates rapidly, so that ‘Ml, the first term of the sum, only,
need “oe considered;

Nom the course “of the di’pola”r.motionfor’pointe~ -
stern must be included yet. How close to the tip i.s the
superposition to extend? It is readily shown that inte-
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which the dipol motion Must fulfill, affords no posfti~e
solution at the right of the maximum section for

Y

~f = 0,
which begins in x = 1, r“= O as w (“0 = C(t - t
w-here A and c are positive figures. It means: th~ di-
polar motion cannot reach the tip and dipolar motion re-
sults only in an approximated rounded-off ste~-:~.In a
practical-sense there is, of ,course, no exact tip, but
merely a point of very high, but still finite curvature.
The question of final point of the superposition the:i
would, provided a certain roundness is desired, revert to
the considerations made for the bow. 3ut the superposi-
tion toward the stern will %e so small that a minor vari-
ation in final point will ‘have no effect on tie total re-
sult (on t-he moment, for instance) .

3. Continuous, Partially Linearly Variable

Dipolar Superposition

Fdr not very slender solids the dipolar superposi-
tions defined according to the descri3ed method are very
much contingent upon the chosen space division. (See ~igs.
5-8.) This fluctuation admittedly diiniilis~hes.aS the IIUEI-

ber of dipolar spaces increases. But for mathematical
reasons a minimum number is desirable, inorder to keep
the order of the resolvable equation system low. These
considerations were t’he reasons for assuming a continuous,
partially linearly variable superposition in place of a
partially constant dipolar motion. The result was, as
-proved 3Y examples to be given elsewhere, quite satisfj-i:ig.

.,
Proceeding from the general equation (1) for flow ad-

herence, we first develop the equation system. with

(lo)

in the Vth interval,
(fig. 4) , equation (1)

. .

which extends from 51, to tt,+,
becoifles

L. —..—,—,. —......-— —-............. ------..—- .., ,, ..... ... . .... .--.,...’-—. .-,
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The integrals of the first sum on the left side appear
by Von Karman on page 3 ; those of the second sum are read-
ily evaluated. Multiplying the whole equation by . rz,
yields

n ,,:

% (av-!-bvx)[A gv+r IAfv] - Xv ~r [ -(-sin-&~-sin il~) +
1 1

-+ (sin3~+l - sin33v) +r~ (cos3~u+~-cos38v)] = 4nr2W (12)

For abbreviation, we write:
,,

Alv= (sinS~- siria~+z) -(sin& - sin~+i) (13)

Akv= (cos%?~- CO S34!IV+1),

so that (12) becomes

n
Xv (av+tvx) [Agv+rl Afv] + iv bvr [A ‘W ‘-f-rfA klj] =4nr217
1 (14).- ,,. .

Carrying the simplification further,

A~, +r!Afv = Iv, .,~,

J

(15)
x(Agu -l-riAfv) +r(Atv+ r’ Al.cv) = IIU;
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Equation (14), ’which defines av and. tiv, assumes the.
form

n
Zv (au Iu:-l-”’buIIV) = .4n ra W (16)
1

The superposition begins in ~1 with. value c“. Theil
..’., .

al = C - bl~ cl 1.
a2 = c+ bl(52- ~1) - b2 ~2,

I, (17)
. . . . . . .. . . . . . . . . . . ..*.... . .. . . . . . . . . . . . . . . ● **....... ..’

i

+b2
{

(g3-g2) % Iv-
}

~Z ~+ 112 “
3

.-1-●***...***.****.****’***** .* **..* “ (18)

+bn
{

-& Ia +1 In
}
=4nrz W,

‘which is the equation system for “computing the (n -t-1)
l’Lil&lOWn fac t,ors % blo. .bn. For thepoini “x = O, r = O,
the relation ‘with the notations of equation (8) is

n

{
xv av(Oav-3me3v) +bv(81v-3m02~

}
=41-rw (19)

1

?u.tting
6~~- 3 m e3v = III,U,

} (20)
e lU -3m Qv= IVV .J

reveals for point” x = O, r “= ()

:.,

,.

L I I
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n. ;.’,

c ~U”’I.IIu+b~,
{
,(Q“---~)“~;’:j~tIv-

}
~1 ‘lI,I1~IV1 ‘ “ ~

1;, )

{.
(~a.-~2.$ II%- 52.-,,“,”++ .’ - ,,,,

}
11< “+IVZ

,!. + /:;=,.:::..’.’............ ........i..

{
+l)n:z (g:n+ ‘}n-l) IIInU~nxl II?nnl+IVn_l “

,,
+’bn

{

‘:~.-’”

}
-En ‘““II~n +IVn ‘4ti~ (21)

It should be observed; when’carrying out the calcula-
tion, that the functions... g,.f, k, t are,,the same for all

‘x-”t.*
. .

bodies dependenton ; , or, in other words, construe

k and t in addition to’ &“and f as in the Karman “method.
The .development of equations (18) and, (21) taxes somewhat
longer than when assuming partially constant. dipolar su-
perposition, but the decidedly better.,resultsby” less nuin-
be~ of spaces compensates for this d$aw’bacti. .,

,,.,,...
,.

..,.C.Examples for. A and B .
.

.To illustrate the preceding expositions there follows
a compilation of calculated dipolar superposition fbr bod-
ies which in axial flow are to be substituted by simple
singularities on their axis~ The body contour is indicat-
ed and the ~)mputed dipolar superposition pl”otted in units
of the superposition. which”corres~onds to au indefigit’ely
long cyllni~c of ’diameter’ “(2’R). of maxiuv.m cross section
in a transvei-se”flow. Designating the plotted values with

Me(g), the iip.ol mo,ment u(g) is given by
.,

,~(5)=2ti W~ve(t)

(W = rateof flow). ‘The abscissas of the utilized control
,points are shown by Xls.

. . -——.,,. . . .
*The functio-as gj, f, ki “% were omitted here %ecause of,
the limited space for the scale, and the “comparative ease
with which the functions can be plotted,

.,
..,.



1, Figuro 5: a, body which,,is, produc,ed by ,a sourco
and sink of ~bsolutoly equal yibld in a flow parallel to
its connectiilg line. Tho yield in relation to the axial
rate” of f.loF is so ~.roportiotied that the .maxinum d,iame,ter
equals’ 1/5 “of the distance of the singularities. BOW aiid
stern have the .seune.shape., so the bow is shown only. It
is readily apparent from Figure 5 that the starting point
of the superposition;’ .waq chosen too far Away from the bow.
As a result”’of its too remote distance from the bow the
superp”osi”tion of the first spacing is very large and, in
order to neutralize its effects on the other p’arts of the
contour., a. negative superposition must ,en.sueo

2, I’igure 6: body produced as in Figure 5; yield if “
source’ and sink such as” to”mako the maximum diameter equ”al
the spacing of the singularities.

,’ ,. ,i,

a) The number’ o~” di,polar spacings is insufficient.

b) and c) “Par\i~lly linearly variable..,ste-~dy dipolar
superposition assumed. In case c) it stipulates compli-
ance with differentiat’ed limiting conditions (compare page
5)0 Note that thefluctuatio.ns of the superposition izl.
a) are perfectly in accord with rate of” superposition
%), c).

3. Yigure 7:.Fuhrqann (reference 2) shape No. IV.
(The sketch shows the source distribution producing the
body in axial flow,) The minor -negative dipolar superpo-
sition.adjacent to the bow is ‘rn”ostprobably due to not
quite .pxact selection .,ofstarting point of superposition.

“$.&4. Fuh rmann shape No. 1, .Th’isbody has a very bluilt
nose. The dipolar superposition is computed in three
ways. Because of the slight effect of nose and stern in
very slender bodies the dipol superposition can, so to
speak, be effected for ttio-semi--bodies*. For this body
the dipol superposition, computed according to Veil Karmants

method, manifests unusual fluctuations at the bow (a).
For that reason the equations, given by the postulated ad-
herence of flow in the first two control points, were re-
placed by two flow co”ilditions, which abated the fluctua-
tions very ”materially (b). In Figure 8C the starting
Poiilt is nuch farther away from the nose which, beiilg very

*!i?heninor mutual effect can be accounted for by iteration.
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,,. ,
blunt!

,..
causes the same phenomena as in”’e’x’arnpl’e2’:

.A.s.con”cerns bodies with blunt no”s.e,,the iteration of
the partial equation ‘system for ,t~e nose is i~lpossible.

..’)“, . ,,
.

II. SUPERPOSITION ON THE SURFACE
.

A. .J)qve>opment,of Integral Equation for ‘“,

Surface Superposition and It’s Reduction to a
:,..

Unidime”nsional Integral Equation

The hesitation voiced at the beginning of this r,,eport
against substituting for tti.ebody a dipol superposition on
the a?is, added to the e,xperi”ence gained b~ computing the
cited examples, induced me to apply “a different method for
defining the potential @ of the transverse flow around a
solid of rotation. Using the same notations as %efore,”
namely, x = axis of body, z = negative direction of par-
allel.flow, which’ is perpeiidicular to x“, apd y = direc-
tioil perpendicular to ‘x aad z,q~potential O ,is defined ~’
as follows: ““Itmust” satisfy the’ potential equation” A@ =
o, it must act at infinity as (- ‘W,Z), and on the sur-

~face of the: body an must te =0.(n= direction of the
:.,,

outside norma$. Then resolve @ into- @l and @2 i where

Gl=-w z.’
a~

On the surface &=.@:o l?hls fulfills

the conditions for Q. @2 must disappear at infinity and

The problem t,hus resolves to defining 6)2 . “This potential
was approximated in the Ranlcine-Von Karman method by the
dipol superposition of the body.axis. But , con”foraably to
the theory of mass potentials @2 can eq~iaily he repre-
sented as potential of an elementary source-sink smperpo-,
sition” f spread over the surface of
prqnise that the body everywhere has a
tangential plane, that. is, ”no.cusps, t

7
can be. expressed by (reference 8.):.\Nsdo

,., .,

21-T f(x,y,z) +j f(g,n,~) +d~=
~.~ - (22)

s
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Here S, ,..surface of body. .

do; surface differential at point ‘g..l?, (a .,

ifs angle’ between connecting line of fixed sur-
face point P(x,y,z) and running point
II(~,m, ~). with the normal in point
(Compare fig. 9.)

P(x,y,z).

R, distance of fixed from running point.

The lody being symmetrical in rotation, cylindrical
coordinates are introduced

fixed point P: “ R+FS z=r cos ~, x,

runningp,,oint ~: P= ~-, ~=P Cos Cpp, f, (23)

so that (22) becomes,.

Cos * viCos Cpr
2~f(~,r,~r)+~ f(~,p,~p) ~ do =

‘“ s
A=@g_ ’24)

* dr
Ia addition it is written — = Extrapolation

ax
rt,~=P~i

then yields from the geometrical relations shown in Figure
9,

[r-rl (x-~)] -P COS(C&-~p) J=@- (25)
cos~da= +

R
Pd~pd[ ‘=

G“

and, with 1 = length of ‘body,

1 21T [r-r’ (x- E)] -P COS(~r-”Wp)

2nf(xir,Qr)+ J.f f(~,p,~p) >—

00 R3

(26)

which, abbreviated, yields:

(x - g)’ +r’ -+ P’ = a’,
)

.l-2r P =K’, i.
/

(27)... ..
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60 that

R2 5)2 + r2.+ P2”- 2 r,,P COS(~r - ~p)=(x-,

=a2- ~a CO S(~r ‘ qp) = aa - K2 Cos x.

It ~s .r.e@dily.see,nthat <(x, r,Qr) must be p.,rOpor-
tional to ~ cos ~., Consequently, with

f(x~r, ~r) = fe(x, r) T COs ~r,

a few changes result in

22Tr

2nfe(x, r)+ f~ fe(t, ~)
[{

r-,rl(x-~)
00

.-. ,“

}

Cos “x ,

G=-TK5C06 x’

In this integral equation the integration can
x. It is necessary to definetended over

dX

and ,,
.,

2’rr Cosa “x” ““

Ja=~ o ~ar–_————— d~

4 - K2 Cos x’

(2.3)

be eY-

(29)

(30)

.,, ,.

These integrations lead, after a number of transformations,
to elliptical integrals: Putting {reference 4)

x“ l-t2 2dt
tan -= t, Cos x = d~ = -—7

2 l+t2’ l+t

,, ,.... .;’
and abbreviating, ,....,,,.

h2=@2-~2,
~2 + ~2

—
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F-3l+t2-

Moreover , the introduction of

~z

t2=h2—
2

andk=l-A2
1-T2

results, when K denotes the complete elliptic normal in-
tegral of the first category, and E that of the second,

J

[((Xa+K2) E(k2) - a2 K(k2) j ●

For the sake of simplicity, we put

J* =, —— [Gl(k2) + Gz(k2)] ,

K’;+?

(29a)

(30a)

,. .—— —
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t-hat is, : . ..”.

Gl(k2) = -@.- .E(k2) “-K(k2)= “~ N, E(k2)=K(ka) (31.)
.. . ~~_K2 2 l-lK2

2a2 -1-lt2
G2(k2) = ~

2C12-.K2
E(k2) --

K2
K(ka) ,

.2U;
{
E(k2) -

}{
K(k2) +, E(k2)+ K(1c2)

},.
~-ka

.= 2
{

-- ,E(k2)
k2 } {,

- E(k2)’ “+ ‘~(k2)+K(k2)’
}

(32)
,,. .,. .

Then (28) becomes
. . .

2nfe(x,r)+ ~ ~ fe(~, p’)” ‘1” &l (,k2)[~r”~(x-~) +(r-p)] “-PG2 (k2)}
.0 “J~2 .

.. .,...
# .$ ..,,,

J-X’ “~f~ak j&s (33).
1+-r12 ----

---

In this manner the two-dimensional integral equation (22)
has been reduced to a unidimensional one, with nticleus or
core:

1
Mxyr;ttp) = ~ _

{
Gl(k2)[-rl (x-~)-t-(r-P)] -,

r 62+%2

- P Ga(k2)} j= (34)

Thi,s core ~ is exatiined mor6 close.ly~ It contains
Gl(k2) and Gz (k2) , which are aggregates

of elliptic normal integrals. Both become in-finite
for k2~l. Therefore, it is necessar~ to examine the

““bellav”~”orof the core ~n the vicintty’k .=.1-..more..close-
ly. Conformably to the assumptions made previously, a reg-
ular fixed point x,r is stipulated (points x = O, r = O
and x = t, r = O are excluded for the time being). The
term

k2 = 1 - ?t2 =“1 - =. . . ...:..,.-. . .-:, ...,..-.,... .,.,u2”-Fl@.. ,,. ..’... . ...,., . . : ‘“”,. .’ ,-. ,,, ..;. ,. ,’,....:,



goes,” when denoting (g-x)’ ‘by .ge, to~ard 1 as

1- C2 P-2* ., . ...wher’e -CZ =
(
l&~g~, so long as

)- ,.

4r5>~e2 ~ The””term [- r! (x - ~) + (r - P)] goes to-
max

ward 0 as - ~ ~e=o~.,
.,

Since” K(k2) for k2% 1 goes infinite (reference

5) as
- In ck~~,
1 4 !

E(k2)- ~remains finite, and [limit

E(k2) = 1] , it is - k2-+ 1

Thus, “core IK(x,r;~, P) goes for ka~l or g?- o

to infinity as ~n’,4 that-is, it is integrable..L...s
.> .-

.
. For the points x =“0, r =Oandx=t, r= ‘o k~(~)

,,.--.-:,.,.,.. 0, as far as point ~ = O or L = t itself, where
:: : 1; that is,” ~(x,r;~,p) = O for all points outside
of the fixed point. Consequently, the integral

1

vanis::.es for these points. The stern of an airship is -u-su-.
ally pointed, obviating the necessity of deliberating
whether the limitatio”il imposed previously can be removed;
-but, as a matter of ‘fact, it cannot, (Reference. 6) From’ ,
the practical point of view this i.s of no significance,

.since the stern of an airship has .no.mathematically exact

tip, but ‘ier.ely.“apoint of very pronounced but withal fi-
nite curvature.

:Tlllls , abbreviated, ,,as on the ‘preceding page, the in-
te~ral equation becomes

1
.2mfe(x,r)-l-~ fe(~, P)~(x,r; g,P)dg = -—l—_—

fi+r Ia
(36)

o
.— ..— —-- .-—— —...
*The s-abscript ll~a~ll i“g to indicate :the maxi-mum for

~e -—

at which the interpolation fo,rmula is still valid,
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,,. . . . .
!l?oresolve ”it, the well-known iteration nethod. is expedi-
ent. Cho,ose as Oth, approximation .,

,.
,.

,. 1 ._, -f: (x,r) = ----
.... . ...... 2 TIJ~T:!~

.:,
‘e ,’. ,:,... ,..;’

define with this, the i~t,egral .. : : .“% ,.. ,, ,,
.,...“

.,, fe~”d~s jf;~d~ .“..:“ ..O

“.

and t“hus compute the first approximation f:. ,The iilser-
tio~~of this value in,t.othe inte,gral yields the $ecoild -ap-
proximation, etc. The convergence of the method is as-
sured (reference 7), because fg (x:r) is finite,+nucleu”s
~(x,r;&,P) is logarithmically infinite at one ‘point only
and ~ti is less than 1; fe(x,b) i

%&

given by a series of
rising powers of l/T’r. ~ en

:IC(x,r;&,P) fi-1- P1’~6(x>r; ~,P)
—-

.
~(-3-8)-
........-....

--.’----
and

lp
-U~1(5’p) Ke(x,r;E~P)d~Pn(x,r). =j

o P-
(39)

is initially put*. wit.h
? ..,,

Pl,(x,r) y; IJe(x,r;5,P)dt ; ‘(40)

=i%u o

fe(x,r)

[

PI (X,r) Pa (x,r) P3(x,,r)’
fe(x,r)=f~(x,r) -—0----— ~. . .—— +--.~- .:.+r. l-r l-r2 , IF 1.-

.,
—— — ... ———-. —

*For r = 0, see preceding page.

-,,-
,. ,
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,..3., .The PracticalJ Soluti,.on‘of the l’ntegnal Equation
,’. . ........ .

..:.,.

a Numerical definition of core functi.~~&- The most
time-,;onsuming part of the sol”u~~~n-ls the,,de”finition of
the nucleus or core ~e(x, r;~, P) for different. fixed
points (x,r) of the ~odY. The functions G, (k’) an~-”
G2 (kz) -%eing aggregates of whole “elliptic normal intf3-
grals, aro so plotted against k2, as to ho accessible.
“It should bo remembered that both functions+m for I&-+1.

“Gz(k?”)’becomes logarithmically infin”ite, that “is”,compar-
“ativoly in’fe”rior to GI (kZ), which approaches infinity as

“1”,
—

Por more exact reading, it is thereforo advisable
1.L’.lS2
to plot tho function H(’) = (1 - k2)Gl(@) $or @’ valu-
es .c”ontiguous to 1, which remains finite for
Then mark off II(K2)

le~l.
for a predetermined k2 and divide

this, value “by (1 - ,k2t), which yielas .’
,,

.,
G1(k2) = H @2) . ,.

.l, -kz

Figures 10, 11, and 12 show the course of Gl(k2), H(k2)

and G2(k2). The calculus for a~pr.edetermined body then
‘-begin’swith” the determination of the llform factorll kz (x,
r;&,P) for. a fixed point (x,r) (fig. 13) :

k2 can be computed by measuring off the dista~ces
r. and ru 9 It was found, “however, that the purely nu-

merical determination takes about the same time and yields,
of cou se,z

more accurate data, especially” in proximity of

(x,r)o
“.—-. — -—.— .-....-..-__.._
*k is then wr”itten in the fern of

~2=1
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. .
ITi”thout mathernati cal”te.~rngi~b,n’for. the contour, the

calculation df ,. .,,. “.
.. ’,-.. .::: ....

Q(x,r;~,P) .=, [(r -’ P)’- r~(x.~ ~)~.,
.,”” .,.,

offers serious obstacles. : ,.,
.’

This term Q stipulates very exact knowledge of.’thti

tangential direction dx (?igc 14), and of the Se,c-r:,=k

ond derivation rll, in order to define the, lirn,itingvalue
Q Gz (k2) for lc?-+1. In Figure 14 Q corresponds. .to
distance AP. It is readily apparent to ‘what errors any
inaccuracy in r~ of say, 2 per cent, can lead on “along,
slender body. The “absolute erro,r of
al.l.lto (x - g).

Q gro~g proportion-
Of advantage is it that .

(GI (kx) also) for large (x - ~) .. I~xC:O~~ ~s~tiin-
ity of x, however, - that is, for small ? G1
(k2) assumes very high values, so that relatively
discrepancies in Q have a,pronounced effect. on

~(x,r;&,P) = g ~,

{
.G1 Q- P G2

}[

1- .,‘
r ru l+r12’

miil~r

because of the existing difference. If the meridian curve
of tti.ebody is given empirically, a very careful de.terni-
nation of the first and second derivative of r is abso-
lutely necessary. In a given case, it is necessary to
again integrate* r II and r! ‘.oltained iy numerical dif-
ferentiation, to ascertain whether the init’ial values

‘ r’(x) are attained again --within the permissible. limits-
If it results in an inadmissible ‘discrepancy ‘~”r’(x), ft
is ‘possible in most cases to approximate it by a simple
algebraic function and in this manner effect the necessa-
ry corrections on + ?1 and r’.. ,,

,

~~ Treatmant of ‘point of discontinuity of the core6-————-. —_._L.-_.._..-.._-.
After computing the core for a number of fixed points
(x,r) the integral PB(x, r)” can begd_et;rm~;ed. The core
being logarithmically infinite for k2~l,
integration is possible .ininterval

remains ~inzt~t~
/31s0, which con-

tains x, provided f
,.. ~~hereas the in-

tegration can be made gra~hically (or planimetricallx)

—- --- -—

*The integration of empirical functions is admittedly mucfi-
safer than the differentiations as calculation methodo
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outside of this-i’nterVal’, wtthin this critical interval
it must be achieved nulneri’tally. (Figure 15. ) The plot
shows the curve for ~(x, r;~, P)= Assume the ,graphic inte-
gration is made from o“tox - ~ XT and from x+Axr

The choice need not necessarily beto ,1. , , ,d.,xr .=,Ax~,
but for expediency, we assume i’t ~e,’ and express ‘it as
A x- Then the integral

X+AX
z

‘x-~x’, yn(~’p)Ee (x’r; :’P)dg
(43)

must be computedC Herein ~

PI(M) =1 for computing PI (X,r) J
,,

I
(44)

.Pl(t;p)” ,,
P2(E,P) = II

P
P2 (x,r) etc.)

For ge its value i~ written:

I?or E --+x,
.,

G1(l?) ,[(r -“P) -rl(x- t)]

remains finite, as shown elsewhere; thus integral..
.

:x4-Ax
ljl :=’‘J” --T&ti-

Ja2+Jf2
Pn (tSP)GI(~2) [(r-p)-rt (x-E)] d ~ ‘(45)

x-m

can be graphically determined~ There remains

X+lb

LZ = f~ —--- .- 1% (~*P)PG2(k2)d ~
x-Ax ~~2

~,1 J1-w
.—.

Since G2(k2) approaches infinity “as,.. 4
wht3n k2~ I , we put

(46)

,.,, ,
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—.
In ~ I-ka .. ,,G~ (k2-) =..N(k2) + 4-3 ka

‘.” &J, 4. . . . .,,.. .,
The. function

.,-.

fi”(kz)=E (k~)”,~. -
[
K(k2)+ln

~~--”~~.;aka
~’,. w“)’

remains finite for ~ka~ lc.’~’:(~i.gure16. )
. .,.,.;.

Integral L2 resolves, itself to,... .. .

L2 = L21 + L22 -1-””’L23”;
. .

.,.~i.t,h .
....”. . X+AX ““ “,’.

L2”I = J ___
;+K2

I?a(~,P)P N(k2)d ~ (48)
XrnA.x

4rP*
and, taking”’into ‘account that. k2 = —

a2 +, 1’$2

L21 and L22 are’ to be defined graphically. The
integraat of Laa remains finite, provided Pn(t$P) is
a continuous function. -For expedient evaluation functioil

M(@) .&-k3p 1~ ALEIE-
4 .,

is constructed. (Fig. 17. )

Integral L2= is numerically interpreted. Develop-
. ing .

k2=l-.c2 te2+j7 F3+” Q,..; “.1

E
e2

rf,,5~.3
‘“---”’”“P”-= “1‘r..+ r! ~?,,~ rt~ ~ +

f .7. +
•~mJ (52”).,

.. . .
—-.

*F O11OWS from easy extrapolation of equation (42) ,
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,,..... ,, .,

yields
“.

rti-~= “=fi(l+p, ge+p2 Ee2+{”p3 80:...) . (53)

,.
where ..........

$1”=:; - ‘“ ~ ),,

[

~.

p2
()]~

=3.5 c2+El. -*d’ (54)
~4r r

p3
r~,a

= 3“.5 xc
.37

J

As a rule we stop after the term wi’th ~e2 and use
the term of the 3d order to estimate the error. Stopping
after the terms of the 2d order manifest’s for L23 (50)

r
L(

.“P-
=Axpn(x; r) 1+ &Ax2)ln ~ +(In Ax-l)

&“ 1]
+ ~-Axz(lnAx . ~)J

The inclusion of the terms of the 3d order in (52) would
yield a correct ioil of the order of

( ASCo = Axpn(x, r) ~ ~ ~ A**

)
+@3-.

,.. 5

Iil this manner. a reference point is obtained for the se-
lection of A“xO.

g-)_ ExamQ. - The developmeilt of the formulas for com-—..
p~-ting the, surface”, superposition was followed by various
illustrative, .e~~mpl~s in order to check the utility of the
method: ~ :

1. By” a solid-of rotation produced at distance 2rmax
hy a source and a sink.
. . . --———-—...—— —.- —-—-—-. .......-— ——-.——

*Yor computing this correction, we put

f

—,___ .———
.,.

in’ 1 - $’E9”=:’- &:~e. ,.,.,:,:,
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2.. By Fuhrrnann ~o,dy.,~o.lVg#.:, ,.
*., . .. . .. ...’

30 By Fuhrmann %ody No.:1.

The last was chosen because of its specially inconvenient
a.s~ect when computing the a+ial Wp9rPOsiti0na,,,

The different approximations of the function of super.
position fe(x,r) have “been reproduced in Figures 18-20.
The convergence of the” method is seen to be quite good”o”
In example 1, the single correction has always the same
prefix throughout the entire %ody length, so that the er-
ror caused by the alternating prefixes of the corrective
terms (41) is readily estimated. The first correction,. ,:
of course, produces the “principal change in all bo”dies.
Comjjared to the first calculation of the core, the deter-
mination of ~he higher approximations presen”ts few obsta-
cles. Four examples 2 and 3, the corrections change the
prefix along the body - an effect of the almost conical
stern. This change in prefixes is by,itself unfavorable
for ‘the convergence.. However, it being superior for slen-
der bodies to that of example 1, the significance of change
in prefix is withal subordinate.

C. Calculation of Fi”ow

Q..&&gellti d v el~qi W on $he surface of the bod~,---—.——y-.— ------
‘In practice it is important to be able to compute the
pressure on the surface of the body, mhich”mdans that the
velocity must be ‘~no’ivn‘at every point o.f‘the surface. The
velocity is divided into its components - normal and tan-
gential~ ,The,first, induced by the superposition of the “
parallel flow in direction of negative axis z over the
source flow, is zero. The secofid.is “divided itia point
(x,r,q) into components W1 and Wa at right angles to
one another. Component wl clings to the parallel of. lat-
itude in ,direction of the tangent, compoqent Wz in direc-
tion of the tangent of the meridian through point (x,r,V)c

, (Fig. 21. ) ~1 is figured positive in direction of growri

nose to ste%;. ‘2’
ing angle is:v.slid as,positive,,when pointing from

Nom, let fe(~,P) denote, as before, the
surface superposition conjugated to +elocity W = 1. It
results for ml and W2 in’

.,..,.
,,’.

,,
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.

x“
P

%(–
G3(k2) d“~].——,---

~2+~2”

where ..

}.
‘ G3(k2) = ~: {(2 - k2) K(k2) - 2 X(k2),

(fig..22) and
. ..’..

, !:. . i“ r~
= ‘ivCosq -

t

2
W2 ...,,..

,..-.: G;= + ~J~-r;.. . .-.:: ,.

“’.t’~ ”””
;~ J f (t9P)~*r’(x -~)-l-r~(r

J’F ‘i s
- ‘P)”)

o“
~

. .

(55)”

(5”6)

X Gl(k2) - P r; Ga(k’)] d ~} (57)

G3 (k2) :1s logarithmically infinite, the integral in
(55) therefore finite. lTote, when evaluating the integral
of” (57) that, whereas G2 (k2) is logarithmically infinite,

G1(k2) 1i s as* .1— =
● On the other hand, since

l-k? ~2 @ ~~

Qe = (x=~) -l-r~(r-P) = - (l+r12)~e - ~ ~e2 + .;.

,.
e

clianges its prefix for g = O? “Qe’G1 @) “gees, when
proceeding from, the left on x,. toward + ~ , and toward
- w. when approaching x from the right. The integral

.

.mus,t therefore b.e expressed by its ‘principal valuetl
—. -—. . —--—--—- —-- --- .. . ---

.
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. .

1 ““ : -—-

+f
fe(t, P,)m+ P~2

X+8 r,.az +=. .

.: - Another point to be noted
.gral for moin; s x = 0, r = 0“

.

with ,wz” is t~at the inte-
and x = t’,r = O“ does

“~ot disap~ear (in contrast to the ‘normal component set up
by source superposition alone) . It is best t,o:define the
integral for this point separately, foregoing the reduct-
ions, which lose ,their significance because” k2 i$ al-
,ways zero up to one point, Tangential velocity ti2 set
up in point. . x = O, r = O by source superposition “is in
direction of negative axis z
(fig. 23)

and known in magil,itude by

+1-r/’21 fe(’L,P)cosvp
~2 I

=2wf J——————.— sin $’&;=.t COsVp P$~. .
R2

-n/z o ,:,.,.
. “. .,,. .. .

z fe(~,f))p2..~d&+~’2co~2 ~p d~
.2~f—

Ra
0 -lT/2

L _
fe(5, P)P2J=WWf —----

l+P~2dE (58)
o R3

wherein R = /t 2 + P2.

~“
‘\ h> The motential in any.— point of the space .- Tkis is
ii

-—---
given by

——---
;1
1’)

~
z fe(t~p) ‘m~G3(k2)P d~C?= -4 Tvcosqr J

1-
(5$3)—... —

0 J&2 + ,~2
L. ,. . ... . . .

I G3 (E2) being the function defined by (56).
2

‘that, li2 = 1 -
()
>~~ote,
ru ) is always 1, when com-

,. -–.,
puting the “potential in points outs”ide of t“he jody. As ‘a
result, no discontinuity places of the integrand appear.
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An outline of” Von.Karmanls method of computing the
potential flow)of airships in yaw by means of”partially
constant dipolar superposition on the axis of the %ody is
followed’hy several consideration’s for..beginning and end
of the superposition. Then-this method is’i”mproved by
postulating a continuous, in part linearly variable di-
polar superposition on the axis?

,,. ,,....“

The seco’nd’rnain part of the’ report brings the calcu-
lation of the jjotenti,al flow hy mean? of sources and siilks,
arrahged oti t’he “surfs’ce of the airship body. The integral
equation which” =t satisfy this surface superposition is
posed, and. t-ne~, reduced to functions developed from
‘w’holee’lliptic no’rmal integrals. ‘The fuiictions ‘are shown
diagrammatic c“ally”. Tie ‘integrationist resolvable ‘by iter-
ation. The consequence of the method is good. Th6 for-
mulas for computing the velocity on the surface and of the
potential fdr &y:~oint conclude the report.

Translation ~y J. -&~.i_e_r.,,..
National Advisory Committee
for Aeronautics.

. .

,.’

.

. . .

.. . ;,’.,.

.. . . ....
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Figs. 1,2,3,4
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Coordinate axee Fig, 3 Notations

Fig. 2 Body with “dipolarsuper- I?ig.4 Intervals by partially
position on the axes. linec.r~~vcariabledi-

polar superposition.
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[Fig. 5a ,

Fig. 5b

I

Fig. 6a

Figs. >,5b,6a,6b,6c

Figs. 5,6
Computed
dipolar
superpositions
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Figs. 12,13,14
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Fig. 20 Surface superposition of Fuhrmann shape No. I
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Fig. 21 Velocity components
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Fige 22 me G3(k2) function
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Fig. 23 Meridian cut at angle q
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